Phase Relations in the System In_2O_3 -TiO₂-Fe₂O₃ at 1100°C in Air

Francisco Brown, Maria J. R. Flores, and Noboru Kimizuka¹

Centro de Investigaciones en Polimeros y Materiales, Universidad de Sonora, Hermosillo, Sonora, C.P. 83000, Mexico

Yuichi Michiue, Mitsuko Onoda, Takahiko Mohri, and Masaki Nakamura

National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba-shi, Ibaraki-ken 305-0044, Japan

and

Nobuo Ishizawa

Research Laboratory of Engineering Materials, Tokyo Institute of Technology, 4259 Nagatsuda, Midori-ku, Yokohama-shi, 227 Japan

Received July 14, 1998; in revised form November 15, 1998; accepted November 25, 1998

Phase relations in the system In₂O₃-TiO₂-Fe₂O₃ at 1100°C in air are determined by means of a classic quenching method. There exist In₂TiO₅, Fe₂TiO₅ having a pseudo-Brookite-type phase and a new phase, In₃Ti₂FeO₁₀ having a solid solution range from In_2O_3 :TiO₂:Fe₂O₃ = 4:6:1 to In_2O_3 :TiO₂:Fe₂O₃ = 0.384:0.464:0.152 (mole ratio) on the line "InFeO₃"-"In₂Ti₂O₇." The crystal structures of In₃Ti₂FeO₁₀ are pyrochlore related with $a_{\rm m} = 5.9171$ (5) Å, $b_{\rm m} = 3.3696$ (3) Å, $c_{\rm m} = 6.3885$ (6) Å, and $\beta = 108.02$ (1)° in a monoclinic crystal system at 1100°C, and $a_0 = 5.9089$ (5) Å, $b_0 = 3.3679$ (3) Å, and $c_0 = 12.130$ (1) Å in an orthorhombic system at 1200°C. The relationship between the lattice constants of these phases and those of the cubic pyrochlore type are approximately as follows: $a_{\rm m} = -\frac{1}{4}a_{\rm p} + (-\frac{1}{2})b_{\rm p} +$ $(-\frac{1}{4})c_{\rm p}, \ b_{\rm m} = -\frac{1}{4}a_{\rm p} + (0)b_{\rm p} + (\frac{1}{4})c_{\rm p}, \ c_{\rm m} = \frac{1}{4}a_{\rm p} + (-\frac{1}{2})b_{\rm p} + (\frac{1}{4})c_{\rm p}$ and $\beta = 109.47^{\circ}$ in the monoclinic system, and $a_0 = -\frac{1}{4}a_p +$ $(-\frac{1}{2})b_{\rm p} + (-\frac{1}{4})c_{\rm p}, b_0 = -\frac{1}{4}a_{\rm p} + (0)b_{\rm p} + (\frac{1}{4})c_{\rm p}, \text{ and } c_0 = \frac{2}{3}a_{\rm p} + (-\frac{2}{3})$ $b_{\rm p} + (\frac{2}{3})c_{\rm p}$ in the orthorhombic system, where $a_{\rm p} = b_{\rm p} = c_{\rm p} = 9.90$ (Å) are the lattice constants of "In₂Ti₂O₇" having the cubic pyrochlore type. All solid solutions of In₃Ti₂FeO₁₀ have incommensurate structures with a periodicity of $q \times b^*$ (q = 0.281–0.356) along the b^* axis and the stoichiometric phase has $q = \frac{1}{3}$. In FeO₃ having a layered structure type is unstable between 750 and 1100°C. © 1999 Academic Press

INTRODUCTION

Some complex oxides that contain In(III) have interesting physical properties such as transparency in the visible range and high electrical conductivity at room temperature. In

¹To whom correspondence should be addressed at A. Postal 792, Hermosillo, Sonora, C.P. 83000 Mexico. E-mail: nkimizuk@guaymas. uson.mx.

addition, In(III) in crystalline oxides has unique crystal-chemical properties. It is located between Lu(III) and Sc(III) in ionic radius and takes the coordination number of 4, 5, 6, or 8, whereas the coordination numbers of rare earth elements (La–Lu, Y, and Sc) are 6 or higher (1). In₂O₃ under normal pressure has the C-type R_2O_3 crystal structure (R = Ho, -Lu, Y, or Sc) and is transformed into the ilmenitetype structure under high pressure (2). R_2O_3 is well known to transform into the B-type structure under high pressure (3). After completing our study of phase relations in the system In_2O_3 -Zn M_2O_4 -ZnO at 1350°C (M = Fe, Ga, or Al) and the crystal structures of homologous compounds, $(ZnO)_m In_2O_3$ and $(ZnO)_m InMO_3$ having layered structures and $(ZnO)_mGa_2O_3$ (*m* = natural number) (4–9), we started studying ternary systems that contain In_2O_3 and TiO_2 as components. In the system In_2O_3 -TiO₂-MO (M = Zn or Mg) at 1350°C, $(ZnO)_m In(Ti_{1/2}Zn_{1/2})O_3$ having layered structures or (MgO)In(Ti_{1/2}Mg_{1/2})O₃ having a spinel-type structure were synthesized (10). In this paper, we report the phase relations in the system In₂O₃-TiO₂-Fe₂O₃ in air at 1100°C and crystal structure data of a new phase, In₃Ti₂FeO₁₀ with a pyrochlore-related structure and a phase transformation between monoclinic (lower-temperature phase) and orthorhombic (higher-temperature phase), clarified by means of X-ray powder and electron diffractometry.

Compounds of the layered $(ZnO)_m(In_2O_3)_n$ type (m, n = natural number) do not exist in the present system.

EXPERIMENTAL

A classic quenching method was employed, using oxide powders as starting compounds.

Starting Compounds

Powders of In_2O_3 (99.9%), TiO₂ (99.9%), and Fe₂O₃ (99.9%) were used. Prior to mixing, the powders were heated in air at 850°C for 1 day. In_2O_3 had the C-type structure, TiO₂ the rutile- type structure, and Fe₂O₃ the ilmenite-type structure. The particle size of the starting compounds was on the order of micrometers.

Calculated weights of the starting compounds were weighed and mixed under ethanol in an agate mortar for about 25 min. About 40 mixtures were made and heated at 1100° C in air, and phase analyses for the specimens were performed to establish the phase relations in the present ternary system.

Facilities

A vertical electric furnace with a SiC heating element was used. Temperature fluctuation in the furnace was controlled within $\pm 1^{\circ}$ C. We used a box-type of furnace with a Mo–Si alloy heating element for preparation of specimens above 1100° C.

An X-ray powder diffractometer (Rigaku D-Max) with Cu $K\alpha$ radiation with a graphite monochromator, an electron microscope (Hitachi 400), and a scanning electron microscope (JEOL JSM-T200) were used for phase analyses, and lattice constants of the specimens were determined by means of the least-squares method. Si powder (NBS, Standard Reference Material 640b, a = 5.4309 Å) was used as the standard for calibration of the lattice constant measurement.

Experimental Procedures

All mixtures in the ternary system were heated in Pt crucibles in air. The weight of each specimen was monitored before and after heating. Evaporation was negligible within experimental error. After the samples were heated for fixed periods, they were rapidly cooled at room temperature, and X-ray powder diffractometry was used to identify the phases and determine the lattice constants. Some specimens were supplied for SEM observation to confirm phase assemblage. After repeated cycles of heating and grinding of the specimens, we concluded that equilibrium was obtained when the X-ray diffraction patterns indicated no further changes. To index the X-ray powder diffraction peaks of a new phase in the ternary system, the powders were examined by electron diffractometry. Since reaction rates at $T = 1000^{\circ}$ C were too slow to reach equilibrium in a timely manner, $T = 1100^{\circ}C$ was chosen for this study. A detailed description of the experimental method is given in (4).

RESULTS AND DISCUSSION

Phase Relations in the System In_2O_3 - TiO_2 - Fe_2O_3 at 1100°C in Air

The phase relations in this system are shown in Fig. 1.

 In_2O_3 -TiO₂ system. Only one phase, In_2TiO_5 , had been reported previously by Senegas et al. (11). It was synthesized at 1250°C for 24 h and the unit cell constants were a = 7.237 Å, b = 3.429 Å, and c = 14.86 Å, which are similar to those for In₂VO₅. In₂Ti₂O₅ formed rapidly from In₂O₃ and TiO₂ at 1100°C and single-phase samples were formed within 1 or 2 days. Roth (12) synthesized $R_2 Ti_2 O_7$ through solid-state reactions between R_2O_3 (R = Sm, Gd, Dy, Yb, or Y) and TiO₂ powders at $1425-1550^{\circ}$ C for 0.5-1 h in air, and reported that $R_2 Ti_2 O_7$ has the pyrochlore-type structure. $In_2Ti_2O_7$ could not be obtained from a reaction between In_2O_3 and TiO_2 powders at 1550°C for 3 h. Brixner synthesized $R_2 Ti_2 O_7$ (R = Sm-Lu, Y, or Sc) at 1200-1350°C for 10-14 h in air and measured the lattice constants (see Fig. 2), resistivities, and dielectric constants (13). In the present study at 1000 and 1100° C, In₂Ti₂O₇ was also not formed; however, as we describe later, there existed a phase having a pyrochlore-related structure in the ternary system In₂O₃-TiO₂-Fe₂O₃ close to the chemical composition In_2O_3 :TiO₂ = 1:2 (mole ratio). Hereafter, we define this phase as unison- X_1 . The lattice constant of In_2O_3 in

FIG. 1. Phase relations in the system In_2O_3 -TiO₂-Fe₂O₃ at 1100°C in air: \bullet , a single phase exists; \bigcirc , two phases coexist; \blacktriangle , three phases coexist. Unison-X₁ phase has a solid solution range from point A (4:6:1) to point D (0.384:0.464:0.152) through points B (3:4:1) and C (0.380:0.480:0.140) along the line between "InFeO₃" and "In₂Ti₂O₇," where (*u*, *v*, *w*) represents the chemical composition ratio of In₂O₃:TiO₂:Fe₂O₃ (mole ratio). "InFeO₃" and "In₂Ti₂O₇" are unstable phases.

FIG. 2. Relationship between lattice constants of R_2 Ti₂O₇ having cubic pyrochlore structure (13) and ionic radii of constituent *R*(III) with CN = 8 of oxygen cited from Ref. (1). R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, or Sc.

equilibrium with In_2TiO_5 and the lattice constants of TiO_2 with In_2TiO_5 are listed in Tables 1A and 1B. We note that In_2O_3 in equilibrium with In_2TiO_5 has a smaller lattice constant than pure In_2O_3 . We can safely conclude that In_2O_3 has a solid solution range toward In_2TiO_5 which is not explicitly shown in Fig. 1.

 TiO_2 - Fe_2O_3 system. There existed one phase Fe₂TiO₅ having the pseudo-Brookite-type structure with a = 9.789 (1) Å, b = 9.973 (2) Å, and c = 3.7286 (6) Å, which are identical within experimental error to a = 9.7965 (25) Å, b = 9.9805 (25) Å, and c = 3.7301 (1) Å for JCPDS Card No. 41-1432. Karkhanavala and Momin (14) reported the phase diagram for the system Fe₂O₃-TiO₂ at elevated temper-

|--|

Lattice Constants and Unit Cell Volumes of In_2O_3 , Space Group $I2_13$ (No. 199), in Equilibrium with (a) Fe_2O_3 , (b) Fe_2O_3 and Unison- X_1 ,^{*a*} or (c) In_2TiO_5

	Fe ₂ O ₃	$Fe_2O_3 + X_1$	In ₂ TiO ₅	Starting compound	JCPDS (6-416)
a (Å)	10.024 (2)	10.031 (1)	10.109 (3)	10.115 (1)	10.118
V (Å ³)	1007.2	1009.2	1033.3	1035.2	1035.8

"The starting mixture, In_2O_3 : TiO_2 : $Fe_2O_3 = 4:4:2$.

TABLE 1BLattice Constants and Unit Cell Volumes of TiO2 (RutileType), Space Group $P4_2/mnm$ (No. 136), in Equilibrium(a) Fe_2TiO_5 or (b) In_2TiO_5

	Fe ₂ TiO ₅	In ₂ TiO ₅	Starting compound	JCPDS (21-1276)
a (Å)	4.595 (1)	4.592 (1)	4.5927 (2)	4.5933
c (Å)	2.9511 (8)	2.9506 (7)	2.9582 (1)	2.9592
V (Å ³)	40.02	39.98	40.19	40.22

atures in air in which there is only one phase, Fe_2TiO_5 . Taylor established the phase diagram for the system TiO_2 -FeO-Fe₂O₃ at 1300°C at various oxygen partial pressures, and also reported pseudo-Brookite Fe_2TiO_5 (15). These conclusions are consistent with the present study. The lattice constants of Fe_2O_3 in equilibrium with Fe_2TiO_5 and those of TiO_2 in equilibrium with Fe_2TiO_5 are listed in Table 1C.

 In_2O_3 - Fe_2O_3 system. The present results indicate no binary compound in this subsystem. Shannon (2) reported InFeO₃ with an ilmenite-type structure with a = 5.279 Å and c = 14.120 Å, V = 340.81 Å³, under P = 65 kbar at 1200°C. Nodari *et al.* (16) and Gerardin *et al.* (17) made InFeO₃ powders having a hexagonal layered structure with a = 3.334 Å and c = 12.202 Å, through coprecipitation of In (OH)₃ and Fe (OH)₃ in solution followed by heat treatment at 700°C in air, and reported that it decomposed at 800°C. Giaquinta *et al.* (18) made InFeO₃ single crystals from Bi₂O₃ flux at 1123 K for 3 days and reported single-crystal structural data. InFeO₃ is isostructural to the higher-pressure form of InGaO₃ (19).

We heated a mixture of In_2O_3 :Fe₂O₃ = 1:1 at 750°C for 1 week and 1000°C for 4 + 7 + 7 days in a Pt crucible and obtained a mixture of In_2O_3 and Fe₂O₃ without forming InFeO₃. Also, a mixture of In_2O_3 :Fe₂O₃:Bi₂O₃ = 1:1:1 (mole ratio) was heated at 750°C for 3 + 3 days and no InFeO₃ was obtained. Some ternary mixtures of In_2O_3 , TiO₂, and Fe₂O₃ that were heated at 1000 and 1100°C also did not form the InFeO₃ phase. We conclude that layered

TABLE 1C

Lattice Constants and Unit Cell Volumes of Fe_2O_3 , Space Group $R\overline{3}C$ (No. 167), in Equilibrium with (a) Fe_2TiO_5 , (b) In_2O_3 , or (c) In_2O_3 and Unison-X₁

	Fe ₂ TiO ₅	In ₂ O ₃	$In_2O_3 \\ + X_1$	Starting compound	JCPDS (33-664)
u (Å) c (Å) V (Å ³)	5.0329 (1) 13.757 (2) 301.8	5.077 (1) 13.805 (3) 301.2	5.064 (3) 13.845 (8) 307.5	5.0345 (3) 13.7468 (9) 301.8	5.0365 (1) 13.7489 (7) 301.9

No.	Mixing (mole) ratio of starting compounds, In ₂ O ₃ :TiO ₂ :Fe ₂ O ₃	Heating period (days)	Phases obtained
01	1:0:1	4 + 7	In ₂ O ₃ , Fe ₂ O ₃
02	0:3:7	4 + 7	Fe ₂ O ₃ , Fe ₂ TiO ₅
03	0:7:3	4 + 7	Fe ₂ TiO ₅ , TiO ₂
04	2:8:0	4 + 7	In ₂ TiO ₅ , TiO ₂
05	35:65:0	4 + 7	TiO ₂ , In ₂ TiO ₅
06	0:1:1	5 + 7	Fe ₂ TiO ₅
07	1:1:0	7 + 7	In ₂ TiO ₅
08	4:2:4	5 + 7 + 9	X_1 , Fe ₂ O ₃ , In ₂ O ₃
09	30:45:25	7 + 5	X_1 , Fe ₂ O ₃ , Fe ₂ TiO ₅
10	20:65:15	5 + 7	X_1 , Fe ₂ TiO ₅ , TiO ₂
11	4:6:1	5 + 7 + 9	X ₁
12	2:5:3	4 + 7 + 5	X_1 , Fe ₂ TiO ₅
13	35:60:5	9 + 7 + 6	X_1 , In_2TiO_5 , TiO_2
14	50:45:5	9 + 7 + 6	In_2O_3 , In_2TiO_5 , X_1
15	65:35:0	9 + 7 + 6	In_2O_3 , In_2TiO_5
16	4:5:1	7 + 6 + 5	X_1 , In_2TiO_5
18	7:10:2	7 + 6 + 5	X_1
20	48:50:2	5 + 9 + 7	In_2TiO_5, X_1
22	3:4:1	9 + 7 + 7	X ₁
23	35:45:20	9 + 7 + 7	X_1 , Fe ₂ TiO ₅ , Fe ₂ O ₃
24	3875:4500:1625	9 + 7 + 7	X_1 , In_2O_3 , Fe_2O_3
25	4:4:2	9 + 7 + 7	X_1 , In_2O_3 , Fe_2O_3
26	3:6:1	9 + 7 + 7	X_1 , TiO ₂
27	5:4:1	7 + 4 + 4	X_1 , In_2O_3 ,
28	11:14:4	7 + 7 + 7	X_1
29	25:32:9	7 + 7 + 4	X ₁
30	14:18:5	7 + 7 + 4	X_1
31	385:500:115	7 + 7 + 4	X ₁ , In ₂ TiO ₅
32	36:50:14	7 + 7 + 4	X_1 , Fe ₂ TiO ₅
36	5:6:2	6 + 5 + 7	X_1 , In_2O_3 , Fe_2O_3
37	45:42:13	7 + 7	X_1 , In_2O_3

TABLE 2The System In2O3-TiO2-Fe2O3 at 1100°C in Air

TABLE 3A
X-Ray Powder Data of Unison-X ₁ (In ₂ O ₃ :TiO ₂ :Fe ₂ O ₃ = 3:4:1,
Mole Ratio) in the System In ₂ O ₃ -TiO ₂ -Fe ₂ O ₃ at 1100°C in Air ^a

InFeO ₃ is unstable at 750–1100°C and that there exist no
binary phases in the system In ₂ O ₃ -Fe ₂ O ₃ at 1100°C. The
lattice constants of In2O3 and Fe2O3, which are in
equilibrium with each other, are listed in Tables 1A and 1C
We can see that the former are smaller than pure In_2O_3 , and
the latter are greater than pure Fe ₂ O ₃ . We conclude that
In_2O_3 and Fe_2O_3 have a small solid solution range not
explicitly shown in Fig. 1.

 $In_2O_3-TiO_2-Fe_2O_3$ system. One phase was found, In_3Ti_2FeO_{10} (In_2O_3:TiO_2:Fe_2O_3 = 3:4:1 or InFeO_3: In_2Ti_2O_7 = 1:1) near In_2O_3:TiO_2 = 1:2 (mole ratios). Unison-X₁ has a solid solution range on the line between "InFeO₃" and "In_2Ti_2O_7" from In_2O_3:TiO_2:Fe_2O_3 = 4:6:1 (InFeO_3:In_2Ti_2O_7 = 2:3) to 0.384:0.464:0.152 (InFeO_3: In_2Ti_2O_7 = 1.310:1.000). Unison-X₁ is brown. In the ternary system, there are five subareas in which three phases coexist: (1) In_2O_3, In_2TiO_5, and unison-X₁; (2) In_2O_3, Fe_2O_3, and unison-X₁; (3) unison-X₁, Fe_2O_3, and

h	k_1	l	k_2	$d_{\rm obs.}$ (Å)	$d_{\text{calc.}}$ (Å)	I (%)
0	0	1	0	6.0685	6.0753	52
ī	1	1	ī	3.5388	3.5416	3
0	0	2	0	3.0351	3.0376	99
2	0	1	0	2.9206	2.9206	9
1	1	0	0	2.8893	2.8909	12
2	0	0	0	2.8113	2.8135	52
ī	1	1	0	2.7874	2.7879	100
2	0	0	1	2.7070	2.7105	4
2	0	2	0	2.4817	2.4820	19
1	1	1	0	2.4607	2.4630	38
2	0	2	1	2.4122	2.4104	1
2	0	1	0	2.2960	2.2965	12
1	1	2	0	2.2815	2.2831	23
1	1	1	1	2.2498	2.2521	3
1	1	1	1	2.0668	2.0701	2
2	0	3	0	1.9552	1.9551	3
1	1	2	0	1.9433	1.9454	6
3	1	1	1	1.8363	1.8374	5
2	0	2	0	1.8050	1.8046	11
1	1	3	0	1.7977	1.7983	31
2	0	2	1	1.7748	1.7765	1
3	1	1	0	1.7018	1.7022	29
0	2	0	0	1.6851	1.6848	13
3	1	2	0(1.6390	1.6393	10
3	1	0	0)	1 (2)11	1.6389)	
$\frac{0}{2}$	2	1	$\frac{0}{\overline{1}}$	1.6241	1.6235	4
3	1	3	$\frac{1}{1}$	1.5719	1.5/25(4
3 7	1	1	1)	1 5540	1.5/18)	4
3 7	1	1	1	1.5540	1.5549	4
2 1	1	4	0	1.5327	1.5522	14
1	1	3	0	1.3470	1.34/1	14
0 3	1	4	0)	1.3185	1.3188	/
3	1	1		1.4852	1.40.52	19
-	1	1	0)		1.4040)	
4	0	1	0(1.4733	1.4/44(11
0	2	2	0)		1.4/33)	
4	0	2	0	1.4605	1.4603	5
2	2	1	0)		1.4594)	
2	2	0	0	1 4459	1.4454	11
2	0	3	0)	1.1109	1.4453)	11
1	1	4	0	1.4415	1.4422	8
4	0	0	0	1.4063	1.4068	1
2	2	2	0	1.3941	1.3940	4
3	1	3	1	1.3839	1.3843 (2
3	1	1	1)	1 2707	1.3838)	2
4	0	3	0	1.3707	1.3/10	2
2	2	1	0	1.3585	1.3584	3
2	1	4	0	1.3032	1.3033	1
ג ז	1 2	2	0	1.3020	1.3027	1
$\frac{2}{2}$		5	0	1.2700	1.2705	∠ 1
∠ 1	1	4	0	1.2075	1.2672	3
$\overline{\underline{A}}$	0	- -	0	1 2411	1 2410	2
2	2	2	0	1 2319	1 2315	5
2	ő	4	0	1,1911	1,1913	1
$\frac{2}{1}$	1	5	õ	1.1902	1.1897	2
4	0	2	0	1.1482	1.1483	1

TABLE 3A—Continued

h	k_1	l	k_2	$d_{\rm obs.}$ (Å)	$d_{\text{calc.}}$ (Å)	I (%)
$\overline{2}$	2	4	0	1.1417	1.1415	5
3	1	5	0)	1 1 2 2 2	1.1335)	6
3	1	3	0∫	1.1332	1.1330∫	0
0	2	4	0	1.1279	1.1281	3
5	1	2	0	1.1147	1.1145	2
4	2	1	0	1.1090	1.1095	2
5	1	1	0	1.1086	1.1082	2
4	0	5	0	1.1039	1.1038	3
4	2	2	0	1.1033	1.1035	3
1	3	0	0	1.1013	1.1015	2
2	2	3	0	1.0968	1.0970	2
ī	3	1	0	1.0958	1.0955	2
5	1	3	0	1.0846	1.0846	ĩ
4	2	0	0	1.0799	1.0798	1
1	3	1	0	1.0724	1.0725	2
5	1	0	0	1.0677	1.0674	1
$\overline{4}$	2	3	0)	1.0625	1.0634)	2
$\overline{2}$	0	6	0∫	1.0055	1.0632	3
ī	1	5	0	1.0614	1.0615	4
1	3	2	0	1.0560	1.0562	1
5	1	4	0	1.0264	1.0264	1
$\overline{2} \\ 0$	2 0	5 6	$\left. \begin{array}{c} 0 \\ 0 \end{array} \right\}$	1.0127	1.0127 1.0125	2

 ${}^{a}k_{2}$ is an index for the vector along the b^{*} axis with a periodicity of q $(=0.333) \times b^{*}$. a, b, c, and β were calculated from d spacings of $hk_{1}l0$. d spacings of $hk_{1}lk_{2}$ were calculated from a, b, c, β , and q = 0.333.

Fe₂TiO₅; (4) unison-X₁, Fe₂TiO₅, and TiO₂; (5) unison-X₁,TiO₂, and In₂TiO₅. And there are five subareas in which the solid solution of unison-X₁ coexists with In₂O₃, In₂TiO₅, TiO₂, Fe₂TiO₅, or Fe₂O₃. The lattice constants of In₂O₃, Fe₂O₃, and unison-X₁, which are in equilibrium with each other, with a starting mixture of In₂O₃:TiO₂: Fe₂O₃ = 4:4:2, are listed in Tables 1A–1C and 4.

Starting mixtures, heating periods, and phases obtained in the present ternary system for establishing Fig. 1 are summarized in Table 2.

Crystal Structural Study of Unison-X₁

X-ray powder data of unison-X₁ (3:4:1) at 1100 and 1200°C are given in Tables 3A and 3B, and are very similar to those for Lu₂Ti₂O₇ having a cubic pyrochlore-type structure with a = 10.011 Å (JCPDS Card No. 23-0375). From electron diffractometry, we concluded that the lower-temperature form of In₃Ti₂FeO₁₀ is monoclinic and the higher-temperature form is orthorhombic, having a superlattice along the b^* axis with a periodicity of $\frac{1}{3} \times b^*$.

Figures 3A and 3B are photographs of the monoclinic phase and orthorhombic phase. Tables 3A and 3B give the results of four-dimensional indexing (hk_1lk_2) for each powder X-ray diffraction peak in Tables 3A and 3B, where k_1 is an index for b^* and k_2 is for $q \times b^*$ ($q = \frac{1}{3}$). The reason for

TABLE 3BX-Ray Powder Data of Unison- X_1 (In₂O₃:TiO₂:Fe₂O₃ = 3:4:1,Mole Ratio) in the System In₂O₃-TiO₂-Fe₂O₃ at 1200°C in Air^a

h	k_1	l	k_2	$d_{\rm obs.}$ (Å)	$d_{\text{calc.}}$ (Å)	I (%)
0	0	2	0	6.0602	6.0649	55
1	1	1	1	3.6591	3.6608	2
1	1	2	1	3.2495	3.2443	2
0	0	4	0	3.0290	3.0325	100
2	0	0	0	2.9527	2.9545	18
1	1	0	0	2.9243	2.9260	31
2	0	1	0	2.8694	2.8705	9
1	1	1	0	2.8409	2.8444	18
1	1	3	1	2.7874	2.7843	3
2	0	1	1	2.7606	2.7613	3
2	0	2	0	2.6555	2.6561	38
1	1	2	0	2.6343	2.6353	59
1	1	1	1	2.2804	2.2812	4
2	0	4	0	2.1165	2.1162	13
1	1	4	0	2.1043	2.1056	22
2	0	4	1	2.0749	2.0712	3
1	1	5	1	2.0508	2.0509	3
2	0	5	0	1.8746	1.8749	1
1	1	5	0	1.8659	1.8676	3
3	1	0	1	1.8335	1.8351	3
3	1	0	0	1.7001	1.7002	29
0	2	0	0	1 6839	1.6840	17
3	1	1	05	1.0057	1.6838)	17
2	0	6	0	1.6692	1.6684	10
1	1	6	0	1.6631	1.6633	23
3	1	2	0	1.6380	1.6371	9
0	2	2	0	1.6226	1.6226	6
3	1	4	1	1.5700	1.5700	4
3	1	3	0	1.5677	1.5673	2
3	1	0	1	1.5532	1.5527	2
0	0	8	0	1.5163	1.5162	8
1	1	7	0	1.4903	1.4910	2
3	1	4	0	1.4835	1.4830	20
0	2	4	0	1.4725	1.4722	12
2	2	0	0	1.4633	1.4630	2
2	2	1	0	1.4519	1.4525	2
4	0	2	0	1.4355	1.4353	4
2	2	2	0	1.4227	1.4222	8
3	1	5	0	1.3919	1.3923	1
3	1	4	1	1.3821	1.3824	2
2	0	8	0	1.3493	1.3490	2
1	1	8	0	1.3463	1.3462	4
4	0	4	0	1.3277	1.3280	3
2	2	4	0	1.3177	1.3177	3
3	1	6	0	1.3005	1.3012	2
2	2	5	0	1.2533	1.2528	1
4	0	6	0	1.1929	1.1927	1
2	2	6	0	1.1851	1.1852	4
3	1	8	0	1.1318	1.1316	8
0	2	8	0	1.1269	1.1268	5
4	1	/	0	1.1238	1.1242	4
1	1	10	0	1.1202	1.1200	3
2	2	/	0	1.11/8	1.11/9	2
2 4	1	0	0	1.1155	1.1101	4
4	2	1	0	1.1111	1.1105	3
3 1	1	1	0	1.1102	1.1104	3
1	3	1	0	1.0982	1.1029	$\frac{2}{2}$

 TABLE 3B—Continued

 TABLE 3C
 Continued

h	k_1	l	k_2	$d_{\rm obs.}$ (Å)	$d_{\text{calc.}}$ (Å)	I (%)
5	1	2	0	1.0970	1.0967	3
4	2	2	0	1.0924	1.0923	2
1	3	2	0	1.0852	1.0851	4
4	0	8	0	1.0584	1.0581	1
2	2	8	0	1.0532	1.0528	3
5	1	4	0	1.0466	1.0466	2
4	2	4	0	1.0426	1.0428	2
1	3	4	0	1.0362	1.0365	2
2	0	11	0	1.0329	1.0331	1
1	1	11	0	1.0320	1.0319	1
5	1	5	0	1.0128	1.0132	1
0	0	12	0	1.0110	1.0108	3

 ${}^{a}k_{2}$ is an index for the vector along the b^{*} axis with a periodicity of q (= 0.333)× b^{*} . a, b, and c were calculated from d spacings of $hk_{1}l0$. d spacings of $hk_{1}lk_{2}$ were calculated from a, b, c, and q = 0.333.

not using normal three-dimensional unit cell constants having 3b is given later. Unison-X₁ with an "In₂Ti₂O₇"-rich composition in the solid solution range has a monoclinic system and that with an InFeO₃-rich composition has an orthorhombic system at 1100°C. We observed incommensurate diffraction spots with a spacing equal to q(= 0.281–0.357)×b* along the b* axis on electron diffraction photographs which also appeared as corresponding

TABLE 3CX-Ray Powder Data of Unison- X_1 (In₂O₃:TiO₂:Fe₂O₃ = 4:6:1,Mole Ratio) in the System In₂O₃-TiO₂-Fe₂O₃ at 1100°C in Air^a

h	k_1	l	k_2	$d_{\rm obs.}$ (Å)	$d_{\text{calc.}}$ (Å)	I (%)
0	0	1	0	6.0520	6.0638	41
ī	1	1	ī	3.5951	3.6053	2
0	0	2	0	3.0290	3.0319	87
1	1	1	ī	2.9622	2.9716	3
$\overline{2}$	0	1	0	2.9169	2.9198	9
ī	1	0	0	2.8929	2.8976	12
2	0	0	0	2.8113	2.8125	52
ī	1	1	0	2.7908	2.7935	100
2	0	0	1	2.6959	2.6967	4
$\overline{2}$	0	2	0	2.4804	2.4802	16
1	1	1	0	2.4633	2.4659	38
2	0	1	0	2.2938	2.2946	12
1	1	2	0	2.2837	2.2847	25
ī	1	1	1	2.2284	2.2276	2
1	1	1	1	2.0508	2.0505	2
$\overline{2}$	0	3	0	1.9528	1.9528	3
1	1	2	0	1.9449	1.9455	7
3	1	1	ī	1.8425	1.8460	3
2	0	2	0	1.8016	1.8023	15
ī	1	3	0	1.7977	1.7978	31
2	0	2	1	1.7678	1.7707	1
3	1	1	0	1.7030	1.7033	32

h	k_1	l	k_2	$d_{\rm obs.}$ (Å)	$d_{\text{calc.}}$ (Å)	I (%)
0	2	0	0	1.6879	1.6903	9
3	1	2	- 0)	1 6396	1.6401	9
3	1	0	0)	1 (204	1.6397)	,
$\frac{0}{2}$	2	1	$\frac{1}{1}$	1.6284	1.6282	4
3	1	3 1	$\frac{1}{1}$	1.5759	1.5771	3
$\frac{3}{2}$	0	4	0	1,5503	1.5499	6
1	1	3	0	1.5461	1.5461	13
0	0	4	0	1.5158	1.5160	7
3	1	3	0)	1 4852	1.4853)	10
3	1	1	0∫	1.4052	1.4848∫	19
0	2	2	0	1.4763	1.4764	11
4	0	1	0	1.4737	1.4740	5
2	2	1	0	1.4625	1.4629	2
4	2	2	0	1.4596	1.4599	4
2	0	3	0	1.4467	1.4400	9 5
1	1	4	0	1.4407	1.4410	3
1	1	3	1	1.4258	1.4261	1
4	0	0	0	1.4059	1.4063	2
$\overline{2}$	2	2	0	1.3970	1.3968	5
$\overline{4}$	0	3	0	1.3703	1.3703	2
2	2	1	0	1.3602	1.3609	3
3	1	4	0)	1.3026	1.3028	1
3	1	2	0)	1.0504	1.3022)	-
2	2	3	0	1.2781	1.2780	2
2	1	3	0	1.2630	1.2032	2
$\frac{1}{\overline{A}}$	1	4 4	0	1.2030	1.2030	2
2	2	2	0	1.2330	1.2329	4
2	0	4	0)	1.1000	1.1894)	
$\overline{1}$	1	5	0	1.1889	1.1883	3
4	0	2	0	1.1474	1.1473	2
2	2	4	0	1.1425	1.1424	4
3	1	5	0)	1.1326	1.1327	4
3	1	3	0)	1 1200	1.1322)	-
0	2	4	0	1.1290	1.1286	5
5 ⊼	2	1	0	1.1147	1.1147	1
5	1	1	0	1.1100	1 1084	3
4	2	2	0)	1.1002	1.1049)	2
1	3	0	0	1.1053	1.1049	3
4	0	5	0	1.1023	1.1027	3
ī	3	1	0	1.0990	1.0989	4
2	2	3	0	1.0976	1.0976	2
5	1	3	0	1.0848	1.0846	2
4	2	0	0	1.0811	1.0810	2
1 5	3 1	1	0	1.0755	1.0735	2
$\overline{\underline{A}}$	2	3	0	1.0070	1.0074	1
2	0	6	0	1.0615	1.0614	3
1	1	5	0	1.0596	1.0601	3
$\frac{1}{1}$	3	2	0	1.0593	1.0591	2
5	1	4	0	1.0261	1.0262	1
$\overline{2}$	2	5	0	1.0130	1.0129	1
0	0	6	0	1.0107	1.0107	2

 ${}^{a}k_{2}$ is an index for the vector along the b^{*} axis with a periodicity of q (= 0.356) × b^{*} . a, b, c, and β were calculated from d spacings of $hk_{1}l0$. d spacings of $hk_{1}lk_{2}$ were calculated from a, b, c, β , and q = 0.356.

TABLE 3DX-Ray Powder Data of Unison-X1 (In_2O_3 :TiO2:Fe2O3 =15:16:7 in a mole ratio) in the System In_2O_3 -TiO2-Fe2O3 at1200°C in Air

h	k_1	l	k_2	$d_{obs.}$ (Å)	$d_{\text{calc.}}$ (Å)	I (%)
0	0	2	0	6.0685	6.0773	45
1	1	0	1	3.7131	3.6683	2
1	1	1	1	3.5005	3.5118	2
1	1	2	ī	3.1329	3.1415	2
0	0	4	0	3.0351	3.0387	100
2	0	0	0	2.9469	2.9489	20
1	1	0	0	2.9225	2.9249	35
2	0	1	0	2.8640	2.8658	14
1	1	1	0	2.8409	2.8437	26
2	0	1	1	2.7889	2.7873	2
1	1	3	1	2.7228	2.7193	2
2	0	2	0	2.6525	2.6531	44
1	1	2	0	2.6328	2.6355	81
2	0	2	1	2.5884	2.5904	3
1	1	1	1	2.3548	2.3560	2
1	1	2	1	2.2325	2.2335	1
2	0	4	0	2.1165	2.1162	15
1	1	4	0	2.1062	2.1073	30
2	0	4	1	2.0820	2.0840	3
2	0	5	0	1.8746	1.8758	4
1	1	5	0	1.8688	1.8695	6
3	1	0	ī	1.8109	1.8128	4
3	1	0	0	1.6977	1.6979	27
0	2	0	0	1.6839	1.6841	14
3	1	1	0	1.6805	1.6816	9
2	0	6	0	1.6709	1.6698	10
1	1	6	0	1.6647	1.6653	28
3	1	2	0	1.6353	1.6353	7
0	2	2	0	1.6226	1.6230	3
3	1	0	1	1.5748	1.5745	3
3	1	4	1	1.5564	1.5568	3
0	0	8	0	1.5194	1.5193	9
2	0	7	0	1.4959	1.4963	2
1	1	7	0	1.4920	1.4931	3
3	1	4	0	1.4822	1.4822	19
0	2	4	0	1.4733	1.4730	13
2	2	0	0	1.4621	1.4624	4
2	2	1	0	1.4515	1.4520	4
4	0	2	0	1.4324	1.4329	4
2	2	2	0	1.4219	1.4219	11
3	1	5	0	1.3919	1.3920	1
2	2	3	0	1.3753	1.3756	1
2	0	8	0	1.3506	1.3506	2
1	1	8	0	1.3483	1.3483	6
4	0	4	0	1.3261	1.3265	4
2	2	4	0	1.3177	1.3178	4
3	1	6	0	1.3014	1.3013	1
0	2	6	0	1.2949	1.2950	1
4	0	5	0	1.2613	1.2607	1
2	2	5	0	1.2533	1.2531	2
0	0	10	0	1.2158	1.2155	1
3	1	7	0	1.2146	1.2140	1
4	0	6	0	1.1916	1.1921	3
2	2	6	0	1.1858	1.1857	6
3	1	8	0	1.1322	1.1322	7
0	2	8	0	1.1282	1.1281	5

 TABLE 3D
 Continued

h	k_1	l	k_2	$d_{\rm obs.}$ (Å)	$d_{\text{calc.}}$ (Å)	I (%)
4	0	7	0	1.1244	1.1239	4
2	0	10	0	1.1240	1.1238	4
1	1	10	0	1.1225	1.1224	5
2	2	7	0	1.1188	1.1186	3
5	1	0	0	1.1131	1.1133	1
4	2	0	0	1.1094	1.1094	1
5	1	1	0	1.1086	1.1086	1
1	3	0	0	1.1031	1.1029	2
5	1	2	0	1.0949	1.0951	3
4	2	2	0	1.0918	1.0913	5
1	3	2	0	1.0852	1.0852	3
4	0	8	0	1.0582	1.0581	2
2	2	8	0	1.0536	1.0536	2
5	1	4	0	1.0452	1.0453	3
4	2	4	0	1.0424	1.0421	3
1	3	4	0	1.0367	1.0368	2
2	0	11	0	1.0344	1.0347	3
1	1	11	0	1.0334	1.0337	3
0	0	12	0	1.0130	1.0129	2
5	1	5	0	1.0122	1.0122	2

 ${}^{a}k_{2}$ is an index for the vector along the b^{*} axis with a periodicity of q $(=0.281) \times b^{*}$. a, b, c, and β were calculated from d spacings of $hk_{1}l0$. d spacings of $hk_{1}lk_{2}$ were calculated from a, b, c, β , and q = 0.281.

diffraction peaks on X-ray powder diffraction patterns of the specimens of both the orthorhombic and monoclinic phases (see Tables 3C and 3D). In these tables are listed the powder data on four-dimensional hk_1lk_2 in which k_2 is an index of the periodicity of $q \times b^*$. The lattice constants of unison-X₁, including q, are listed in Tables 4A and 4B. They are almost independent of the chemical composition of the solid solution; however, q increases with the composition of In₂Ti₂O₇ in the both the monoclinic and orthorhombic phases. The relationship between the lattice constant of $a_p = 9.90$ Å of an imaginary "In₂Ti₂O₇," which was estimated from Fig. 2, and those of unison-X₁ in the monoclinic or orthorhombic system are approximately as follows:

$$\begin{split} a_{\rm m} &= -\frac{1}{4}a_{\rm p} + (-\frac{1}{2})b_{\rm p} + (-\frac{1}{4})c_{\rm p}, \\ b_{\rm m} &= -\frac{1}{4}a_{\rm p} + (0)b_{\rm p} + (\frac{1}{4})c_{\rm p}, \\ c_{\rm m} &= \frac{1}{4}a_{\rm p} + (-\frac{1}{2})b_{\rm p} + (\frac{1}{4})c_{\rm p}, \\ \beta(^{\circ}) &= 109.47, \\ a_{\rm 0} &= -\frac{1}{4}a_{\rm p} + (-\frac{1}{2})b_{\rm p} + (-\frac{1}{4})c_{\rm p}, \\ b_{\rm 0} &= -\frac{1}{4}a_{\rm p} + (0)b_{\rm p} + (-\frac{1}{4})c_{\rm p}, \\ c_{\rm 0} &= \frac{2}{3}a_{\rm p} + (-\frac{2}{3})b_{\rm p} + \frac{2}{3}c_{\rm p}, \end{split}$$

where $a_{\rm p} = b_{\rm p} = c_{\rm p} = 9.90$ Å.

FIG. 3. Electron diffraction photographs of (A) monoclinic $In_3Ti_2FeO_{10}$ and (B) orthorhombic $In_3Ti_2FeO_{10}$.

In Fig. 4, we show the relationship between the unit cell of the cubic pyrochlore and those of the unison- X_1 structures. We conclude that $In_3Ti_2FeO_{10}$ undergoes a phase transformation between 1100 and 1200°C in air. At 1100°C, monoclinic unison- X_1 was formed from In_2O_3 , TiO₂, and

 Fe_2O_3 powders in the full solid solution range, and next, an orthorhombic phase appeared very gradually from the monoclinic phase in the InFeO₃-rich region. The monoclinic phase was not fully transformed into the orthorhombic phase in a single phase state at 1100°C because of

TABLE 4ALattice Constants and Unit Cell Volumes of Unison-X1 (Monoclinic System, Extinction Law: $h+k_1 \neq 2n$ for $hk_1/0$) Prepared at1100°C^a

u:v:w	3:4:1	7:10:2	4:6:1	7:12:1 ^b
s:t	1:1	4:5	2:3	
a (Å)	5.9171 (5)	5.9165 (6)	5.9158 (6)	5.919 (5)
b (Å)	3.3696 (3)	3.3779 (3)	3.3806 (3)	3.371 (3)
c (Å)	6.3885 (6)	6.3806 (6)	6.3773 (6)	6.378 (5)
β (°)	108.02 (1)	108.04 (1)	108.04 (1)	108.12 (5)
q	0.333	0.350	0.356	
\tilde{V} (Å ³)	121.1	121.3	121.2	120.9

^{*a*}All the specimens have a periodicity with $q \times b^*$ along the b^* axis. *u:v:w*, mole ratio of In₂O₃:TiO₂:Fe₂O₃; *s:t*, mole ratio of InFeO₃:In₂Ti₂O₇.

^bThere exist three phases: unison- X_1 , TiO₂, and In₂TiO₅.

TABLE 4BLattice Constants and Unit Cell Volumes of Unison-X1 (Or-thorhombic System, Extinction Law: $h+k_1 \neq 2n$ for $hk_1/0$ and $k_1 \neq 2n$, $l \neq 2n$ for $0k_1/0$) Prepared at 1200°C for (2+2+3)days^a

u:v:w s:t	4:4:2 ^b	15:16:7 7:4	7:8:3 3:2	31:36:13 13:9	3:4:1 1:1
a (Å)	5.901 (2)	5.8979 (5)	5.9007 (5)	5.9036 (7)	5.9089 (5)
b (Å)	3.368 (1)	3.3683 (3)	3.3672 (3)	3.3691 (4)	3.3679 (3)
c (Å)	12.146 (4)	12.155 (1)	12.149 (1)	12.148 (1)	12.130(1)
q		0.281	0.293	0.302	0.3333
V (Å ³)	241.4	241.5	241.4	241.3	241.4

 ${}^{a}u:v:w$, mole ratio of $In_2O_3:TiO_2:Fe_2O_3$; s:t, mole ratio of $InFeO_3:In_2Ti_2O_7$.

^bThere exist three phases—unison- X_1 , Fe₂O₃, and In₂O₃—which were heated at 1100°C.

FIG. 4. Relationship between the unit cell of cubic pyrochlore and those of monoclinic and orthorhombic unison- X_1 .

the sluggish rate of the phase transformation. Therefore, the limit of the solid solution range of orthorhombic unison-X₁ in the InFeO₃-rich region was actually determined from the limit of the unstable monoclinic phase. However, since the reaction rate for the formation of the orthorhombic phase, which is in equilibrium with In₂O₃ and Fe₂O₃, from a mixture of In₂O₃:TiO₂:Fe₂O₃ = 4:4:2 or 4:2:4, for instance, was much faster than that in a single-phase state from the monoclinic phase, we safely conclude that the InFeO₃-richer area has the orthorhombic phase.

FIG. 5. Dependence of the structure of unison- X_1 on the chemical composition and temperature. s:t, InFeO₃:In₂Ti₂O₇ mole ratio. \blacktriangle , Monoclinic phase. \blacksquare , Orthorhombic phase.

In Fig. 5, we show the dependence of the structure of unison- X_1 on chemical composition and temperature. It is clear that the area of the orthorhombic phase expands with higher temperature. At present, although we do not know the detailed crystal structures of the unison- X_1 phases, we conclude that (1) unison- X_1 has a continuous solid solution range along a line between "InFeO₃" and "In₂Ti₂O₇," (2) it has at least two crystal structures related to the pyrochlore type, (3) In₃Ti₂FeO₁₀ has a monoclinic phase at 1100°C and an orthorhombic phase at 1200° C, (4) unison-X₁ has incommensurate diffraction spots along the b^* axis with a periodicity of $q (= 0.281 - 0.356) \times b^*$ in the solid solution range and $q = \frac{1}{3}$ at the chemical composition of In₂O₃: TiO_2 :Fe₂O₃ = 3:4:1. We prepared about 30 compounds in the system In_2O_3 -Ti O_2 - A_2O_3 -BO (A = A1, Cr, Mn, Fe, orGa; B = Mg, Mn, Co, Ni, Cu, or Zn) that are isostructural with the monoclinic or orthorhombic phase of unison- X_1 . Conditions of synthesis and analysis of their crystal structures including the incommensurate one will be reported soon.

ACKNOWLEDGMENTS

One of the authors (N.K.) expresses his sincere thanks to the late Dr. M. Isobe and Dr. M. Saeki for their helpful discussions and to the Japan International Cooperation Agency for financial support.

REFERENCES

- 1. R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).
- 2. R. D. Shannon, Solid State Commun. 4, 629 (1966).
- 3. H. R. Hoekstra, Inorg. Chem. 5, 754 (1966).
- M. Nakamura, N. Kimizuka, and T. Mohri, J. Solid State Chem. 86, 16 (1990).
- M. Nakamura, N. Kimizuka, and T. Mohri, J. Solid State Chem. 93, 298 (1991).
- M. Nakamura, N. Kimizuka, T. Mohri, and M. Isobe, J. Solid State Chem. 105, 535 (1993).
- N. Kimizuka, M. Isobe, T. Mohri, and M. Nakamura, J. Solid State Chem. 103, 394 (1993).
- N. Kimizuka, M. Isobe, and M. Nakamura, J. Solid State Chem. 116, 170 (1995).
- N. Kimizuka, E. Takayama-Muromachi, and K. Siratori, *in* "Handbook on the Physics and Chemistry of Rare Earths" (K. A. Gschneidner, Jr. and L. Eyring, Eds.), Vol. 13, Chap. 90, p. 283, North-Holland, Amsterdam, 1990.
- M. Nakamura and N. Kimizuka, Jpn. J. Appl. Phys. 32/33, Suppl. 184 (1994).
- 11. J. Senegas, J.-P. Manaud, and J. Galy, Acta Crystallogr. Sect. B 31, 1614 (1975).
- 12. R. S. Roth, J. Res. Natl. Bur. Stand. 56, 17 (1956).
- 13. L. H. Brixner, Inorg. Chem. 3, 1065 (1964).
- 14. M. D. Karkhanavala and A. C. Momin, J. Am. Ceram. Soc. 42, 400 (1959).
- 15. R. W. Taylor, Am. Miner. 49, 1026 (1964).
- I. Nodari, A. Alebouyeh, J. F. Brice, R. Gerardin, and O. Evrard, Mater. Res. Bull. 23, 1039 (1988).
- R. Gerardin, E. H. Aqachmar, A. Alebouyeh, and O. Evrard, *Mater. Res. Bull.* 24, 1417 (1989).
- D. M. Giaquinta, W. M. Davis, and H. C. Z. Loye, *Acta Crystallogr.* Sect. C 50, 5 (1994).
- 19. R. D. Shannon and C. T. Prewitt, J. Inorg. Nucl. Chem. 30, 1389 (1968).